8,470 research outputs found

    Innovation Institution and Spatial Transfer of Energy Industry: The Case of Jiangsu Province, China

    Get PDF
    This study aims to explore the effect of innovation institution on spatial transfer of energy industry in Jiangsu, China. We focus on the disparity of innovation and energy industry, and analyze the spatial transfer difference in different types of energy industry, rather than view energy industry as a whole. The study demonstrates the spatial change of energy industry at regional level and maps the spatial pattern at city level. The study chooses intellectual property rights (IPRs) protection intensity, authorization patents and local research and development (R&D) investment as the proxy of innovation. Using official data and employing panel fixed-effect model at city-industry level, we conclude (a) innovation abilities significantly influence the spatial transfer of energy industry in Jiangsu. Especially, due to the different time, IPRs protection, patent counts, and R&D investment have different effects on different regions in Jiangsu; (b) 2010 is an important turning point for energy industry development in Jiangsu, and after 2010, the energy industry begins to shift to the middle and northern Jiangsu, whereas the spatial pattern of energy industry in coastal cities is basically unchanged; (c) there is a great difference between the regions in Jiangsu Province, and industrial upgrading has not been achieved in northern Jiangsu

    Superfluidity in Three-species Mixture of Fermi Gases across Feshbach Resonances

    Full text link
    In this letter a generalization of the BEC-BCS crossover theory to a multicomponent superfluid is presented by studying a three-species mixture of Fermi gas across two Feshbach resonances. At the BEC side of resonances, two kinds of molecules are stable which gives rise to a two-component Bose condensate. This two-component superfluid state can be experimentally identified from the radio-frequency spectroscopy, density profile and short noise measurements. As approaching the BCS side of resonances, the superfluidity will break down at some point and yield a first-order quantum phase transition to normal state, due to the mismatch of three Fermi surfaces. Phase separation instability will occur around the critical regime.Comment: 4 pages, 3 figures, revised versio

    Criterion for bosonic superfluidity in an optical lattice

    Full text link
    We show that the current method of determining superfluidity in optical lattices based on a visibly sharp bosonic momentum distribution n(k)n({\bf k}) can be misleading, for even a normal Bose gas can have a similarly sharp n(k)n({\bf k}). We show that superfluidity in a homogeneous system can be detected from the so-called visibility (v)(v) of n(k)n({\bf k}) −- that vv must be 1 within O(N−2/3)O(N^{-2/3}), where NN is the number of bosons. We also show that the T=0 visibility of trapped lattice bosons is far higher than what is obtained in some current experiments, suggesting strong temperature effects and that these states can be normal. These normal states allow one to explore the physics in the quantum critical region.Comment: 4 pages, 2 figures; published versio

    Theory of huge tunneling magnetoresistance in graphene

    Full text link
    We investigate theoretically the spin-independent tunneling magnetoresistance effect in a graphene monolayer modulated by two parallel ferromagnets deposited on a dielectric layer. For the parallel magnetization configuration, Klein tunneling can be observed in the transmission spectrum, but at specific oblique incident angles. For the antiparallel magnetization configuration, the transmission can be blocked by the magnetic-electric barrier provided by the ferromagnets. Such a transmission discrepancy results in a tremendous magnetoresistance ratio and can be tuned by the inclusion of an electric barrier.Comment: 4 pages, 4 figure

    Position dependent photodetector from large area reduced graphene oxide thin films

    Get PDF
    We fabricated large area infrared photodetector devices from thin film of chemically reduced graphene oxide (RGO) sheets and studied their photoresponse as a function of laser position. We found that the photocurrent either increases, decreases or remain almost zero depending upon the position of the laser spot with respect to the electrodes. The position sensitive photoresponse is explained by Schottky barrier modulation at the RGO film-electrode interface. The time response of the photocurrent is dramatically slower than single sheet of graphene possibly due to disorder from the chemically synthesis and interconnecting sheets

    Measuring infrared contributions to the QCD pressure

    Get PDF
    For the pressure (or free energy) of QCD, four-dimensional (4d) lattice data is available at zero baryon density up to a few times the critical temperature TcT_c. Perturbation theory, on the other hand, has serious convergence problems even at very high temperatures. In a combined analytical and three-dimensional (3d) lattice method, we show that it is possible to compute the QCD pressure from about 2Tc2 T_c to infinity. The numerical accuracy is good enough to resolve in principle, e.g., logarithmic contributions related to 4-loop perturbation theory.Comment: 3 pages; talk by Y. Schroder at Lattice2001(hightemp
    • …
    corecore